<s id="aymem"></s>
  • <source id="aymem"><optgroup id="aymem"></optgroup></source>
  • <source id="aymem"><optgroup id="aymem"></optgroup></source>
  • <acronym id="aymem"></acronym>
  • 首頁 > 選課中心 > 數據分析 > 【快班】R語言魔鬼訓練營
    【快班】R語言魔鬼訓練營
    此課程所屬 【數據分析師專業方向】, 【全棧程序猿】, 【數據分析師專業方向】專業,報名專業套餐,可享受0元學習特惠!點擊了解詳情
    隨報隨學 共12課 ★★☆
    開課時間 課程周期 難易度
    招生中

    立即報名
    算法 數據分析 編程 R語言 ETL
    課程介紹
           煉數成金2012年在國內首次開出R語言的體系化課程,為這一強大的數據分析開源利器在國內迅速普及作出了貢獻。三年來,課程開了接近20期,受益的學員數以千計,這些學員現在正逐漸成長為各自公司數據分析的中堅力量。然而在教學過程中我們發現,很多學員對R有了一定的認識,在使用R做一些常見的分析算法得心應手,但仍然對R的代碼編寫并不是十分熟練,經常會在一些小問題上出錯。更進一步,在處理數據的時候,會經常發現函數包開發者的想法與場景需求有差異,雖然基本的算法可以使用,但是由于需求不同,使用者經常面對某某函數的結果輸出無能為力,達不到自己的要求,亦或是找不到合適的程序包完成自己的需求,而自己卻沒有編程的能力去實現定制的算法,等等。這是我們開設本課程首要解決的問題。事實上不光R語言的學習有這樣的問題,其它任何一種編程語言,例如C++、Java、Python、PLSQL等等都有相似的問題。為此,我們計劃開設一系列的“魔鬼訓練營”課程(本課程是其中一門課),旨在通過大量的編程練習作業,讓學員鞏固知識,熟練掌握各種細節,成為真正的語言掌控者,邁入更高境界。

           本系列課程的形式與一般的基礎課程不同,每次課主要由若干個例子,以及若干道有一定難度的習題組成,需要較多的動手練習,講師每次課講解例題,以及上周課的習題講解,如果有需要了解的背景知識,會穿插在題目講解中。另外每期課,可能都會更換大量習題,第二期跟第一期相比,可能就是完全不同的課程了,“做題控”們不妨可以每期都加入,讓自己的能力通過反復迭代的學習逐漸臻于化境。
    課程大綱
    第一部分 數據讀取與輸出、數據整理
    第1課:數據分析九成時間花在ETL上。R語言ETL基礎
    第2課:從原始文件讀取數據,從各種數據文檔讀取數據
    第3課:R數據結構揭秘,怎樣根據不同場景和問題選擇合適的數據結構?
    第4課:數據整理清洗,錯誤與缺失數據處理。ETL的最關鍵環節

    第二部分 基本編程
    第5課:玩轉R語法
    第6課:R的向量化編程,為什么需要向量化編程?
    第7課:什么?R還可以面向對象?R面向對象編程基礎(S3,S4)
    第8課: R面向對象編程進階(RC,R6)
    第9課:玩轉R數據展現,R繪圖秘技
    第10課:R編程調試,利用并行計算提升分析速度
    第11課:高級數值計算與統計計算
    第12課:成長為R大蝦,向互聯網世界分享你的程序,R包的制作與上傳
    授課講師
    何翠儀,中山大學統計學專業畢業,煉數成金專職講師,在過去曾講授《大數據的統計學基礎》課程,并負責多門煉數成金數據分析課程的助教工作,參與主持建設煉數成金的R語言認證題庫系統(即將上線)

    王穎之,中山大學數學與計算科學學院統計專業,負責煉數成金的數據分析多門課程助教工作。豐富的數據分析經驗及熟練掌握STATA統計軟件。 
    課程環境
    windows
    授課對象
    想提高R編程能力的學員,想進一步學習R的學員
    收獲預期
    讓學員可得心應手地使用R進行編程以解決各種問題
    課程試聽
    課程學費
    學費:400元(固定學費:300元 + 逆向學費:100元)
    新穎的課程收費形式:“逆向收費”約等于免費學習,課程收取300元固定收費 + 100元逆向學費,學習圓滿則全額獎勵返還給學員!
    特別說明如下
    本門課程本來打算完全免費,某位大神曾經說過“成功就是正確的方向再加上適度的壓力”。考慮到講師本身要付出巨大的勞動,為了防止一些朋友在學習途中半途而廢,浪費了講師的付出,為此我們計劃模仿某些健身課程,使用“逆向收費”的方法。 在 報名時每位報名者收取400元,其中300元為固定 收費,另外100元是暫存學費,即如果學員能完成全部課程要求,包括完成全部的書面作業,則100元全款退回。如果學員未能堅持到完全所有的學習計劃任務,則會被扣款。期望這種方式可以轉化為大家強烈的學習愿望和驅動力!
    課程授課方式

    1、 學習方式:老師發布教學資料、教材,幻燈片和視頻,學員通過網絡下載學習。同時通過論壇互動中老師對學員進行指導及學員之間相互交流。

    2、 學習作業:每課均有布置課后作業,學員完成書面作業后則可進入下一課學習。

    3、 老師輔導:通過論壇站內信及郵件等多種方式與老師進行一對一互動。

    4、 完成課程:最后一課作業交納后,老師完成作業批改,即可完成課程并取回相應剩余的逆向學費。

    聯系我們
    咨詢Email :edu01@www.w2776.comedu02@www.w2776.com
    課程入門討論咨詢QQ群:706821899(群內有培訓公開課視頻供大家免費觀看)
    咨詢QQ: 點擊這里給我發消息 點擊這里給我發消息
    您是否對此課程還有疑問,那么請 點擊進入FAQ,您的問題將基本得到解答
    全國統一咨詢熱線: 4008-010-006
    最新技術熱點、 最新行業資訊,最新培訓課程信息,盡在煉數成金官方微信,低成本傳遞高端知識!技術成就夢想!歡迎關注!
    打開微信,使用掃一掃功能,即刻關注煉數成金官方微信賬戶,不容錯過的精彩,期待您的體驗!!!

    授課老師

    何翠儀何翠儀
    何翠儀:中山大學統計學專業畢業,煉數成金專職講師,在過去曾講授《大數據的統計學基礎》課程,并負責多門煉數成金數據分析課程的助教工作,參與主持建設煉數成金的R語言認證題庫系統(即將上線)。

    其他快班課程

    【快班】【免費公開課】Python 的安裝與部署
    【快班】計算機視覺算法詳解與實戰開發
    【快班】基于軟件學習數據挖掘算法與案例
    【快班】【免費公開課】《Hadoop入門手冊》——CDH集群安裝
    【快班】Datastage基礎及開發實踐
    【快班】OpenAI強化學習實戰
    【快班】JavaScript從入門到精通
    【快班】贏在大數據-人工智能的應用實踐
    【快班】【免費公開課】《數據科學入門手冊》——DSX架構與部署
    【快班】【免費公開課】數據科學無難事
    【快班】【免費公開課】《Hadoop入門手冊》之 虛擬機的安裝和使用
    【快班】【免費公開課】玩轉數據藝術-數據展示技巧應用實戰
    【快班】【免費公開課】玩轉數據科學——IBM DSX
    【快班】【免費公開課】《Hadoop入門手冊》——Apache Hadoop集群安裝
    【快班】【免費公開課】贏在大數據-數據化運營落地實戰
    【快班】大數據管理
    【快班】Streams流計算引航公開課
    【快班】抽樣調查
    【快班】LATEX公式排版系統引航
    【快班】Watson Analytics數據分析應用實戰公開課
    【快班】數據陷阱解讀
    【快班】R七種武器之文本挖掘包tm
    【快班】R七種武器之可視化JS庫HTMLWidgets包
    【快班】R七種武器之數據加工廠plyr
    【快班】R七種武器之交互化展示包shiny
    【快班】R七種武器之網絡爬蟲RCurl
    【快班】R七種武器之數據可視化包ggplot2
    【快班】R七種武器之金融數據分析quantmod
    【快班】Java經驗談
    【快班】Go語言實戰編程
    【快班】DB2 V11新特性全解析
    【快班】DB2數據庫引航公開課
    【快班】STATA統計分析入門
    【快班】初識正則表達式
    【快班】perl語言入門
    【快班】Scala語言入門
    【快班】Puppet 運維自動化
    【快班】Qt編程快速入門
    【快班】python web框架企業實戰詳解
    【快班】數據治理及數據倉庫模型設計
    【快班】DevSecOps安全交付應用實戰
    【快班】JavaScript突擊-從精通到項目實戰
    【快班】基于案例學習bash腳本編程
    【快班】量化投資基礎計算與模型
    【快班】老板說服術之玩轉數據展示
    【快班】數據庫系統實現技術內幕
    【快班】Goldengate從入門到精通
    【快班】Oracle 12c特性解讀-容器數據庫和災備
    【快班】Oracle 12C RAC集群原理與管理實戰
    【快班】Mycat從入門到精通
    【快班】基于案例學SQL優化
    【快班】大型電商分布式系統實踐
    【快班】深入理解Storm與大數據實戰
    【快班】Java魔鬼訓練營
    【快班】面試突擊-數據結構與算法速成
    【快班】Excel數據分析師突擊—從入門到精通到項目實戰
    【快班】自己動手實踐神經網絡
    【快班】自然語言處理軟件實驗
    【快班】Redis技術實戰
    【快班】推薦系統
    【快班】MongoDB實戰
    【快班】應用系統架構優化方法與案例實戰
    【快班】HBase從入門到精通
    【快班】Hive數據倉庫實踐
    【快班】Hadoop數據分析平臺
    【快班】數據分析與SAS
    【快班】比特幣
    【快班】機器讀心術之文本挖掘與自然語言處理
    【快班】機器讀心術之神經網絡與深度學習
    【快班】快速上手Jmeter性能測試工具
    【快班】軟件性能測試
    【快班】軟件自動化測試Selenium2
    【快班】大數據必知的java基礎
    【快班】快速數據挖掘平臺RapidMiner
    【快班】R語言編程技巧
    【快班】深入BI之Kettle篇
    【快班】基于案例學Java服務器端程序設計
    【快班】Scala從基礎到開發實戰
    【快班】供應鏈物流—電商發展的“核”動力
    【快班】詳解SQL與PL/SQL
    【快班】Oracle職業直通車
    【快班】深度玩轉Excel
    【快班】Hadoop應用開發實戰案例
    【快班】大數據的Linux基礎
    【快班】機器學習
    【快班】量化投資
    【快班】SPSS數據分析入門與提高
    【快班】Python數據分析
    【快班】NoSQL與NewSQL數據庫引航
    【快班】大數據算法導論
    【快班】大數據的矩陣計算基礎
    【快班】R語言數據分析、展現與實例
    【快班】大數據的統計學基礎

    熱招課程

    ◆ 區塊鏈新時代:技術原理與實操(第四期)
    ◆ 安全滲透測試工具之Burp Suite使用精講(第三期)
    ◆ MySQL DBA從小白到大神實戰(第15期)
    ◆ Python機器學習(第八期)
    ◆ 人臉識別90天速成特訓班(第五期)
    ◆ 【強化學習系列】強化視覺導航技術導引(第一期)
    ◆ Web全棧開發理論與實踐(第五期)
    ◆ Hadoop集群原理與運維實踐(第八期)
    ◆ Python數據可視化實戰(第四期)
    ◆ 大數據的統計學基礎(第26期)
    ◆ Oracle DB Performance Tuning(DSI系列Ⅳ)(第四期)
    ◆ 精準安防場景理解及語義分割(第四期)
    ◆ Java Web開發精講(第五期)
    ◆ Python突擊—從入門到精通到項目實戰(第17期)
    ◆ 計算機視覺:從入門到精通,極限剖析圖像識別學習算法(第四期)
    ◆ Python全棧學習——Python基礎及Web開發(第四期)
    ◆ OpenCV計算機視覺產品實戰(第十期)
    ◆ HBase從入門到精通(第11期)
    ◆ 大數據的矩陣計算基礎(第17期)
    ◆ 股票投資基礎之基本面分析(第六期)
    ◆ 黃金Quant工——量化金融分析師進階(第一期)
    ◆ 面試突擊-數據結構與算法速成(第六期)
    ◆ Oracle SQL Tuning(DSI系列Ⅲ)(第五期)
    ◆ 軟件架構必備基礎(第八期)
    ◆ 知識圖譜實戰(第八期)
    ◆ 突擊pyspark:數據挖掘的力量倍增器(第九期)
    ◆ 測試架構師核心技術(第五期)
    ◆ 人臉識別精準安防講習班(第五期)
    ◆ 系統運維之基礎服務進階實戰(第五期)
    ◆ 端到端(End TO End)--由傳統方法到深度學習(第二期)
    ◆ ROS機器人操作系統實戰(第八期)
    ◆ MySQL性能優化最佳實踐(第十期)
    ◆ 深入淺出Git(第九期)
    ◆ Python全棧學習——Python自動化測試(第四期)
    ◆ 股票投資高手武器系列之纏論系統(第六期)
    ◆ OpenAI強化學習實戰(第六期)
    ◆ 基于R的Kaggle實戰案例詳解(第八期)
    ◆ PostgreSQL初識與提高(第三期)
    ◆ Python金融業數據化運營實戰(第五期)
    ◆ 大話流式處理系統 Flink 核心原理(第二期)
    ◆ 深度學習框架Tensorflow學習與應用(第十期)
    ◆ 【百萬年薪系列】視覺的盛宴:深度玩轉人臉識別(第七期)
    ◆ zabbix企業級實踐(第七期)
    ◆ python網絡爬蟲應用實戰(第八期)
    ◆ Elastic Stack實戰(第五期)
    ◆ 機器學習(第28期)
    ◆ Python3入門到精通實戰特訓(第七期)
    ◆ 黃金Quant工——量化金融分析師入門(第三期)
    ◆ 股票投資基礎之技術分析(第八期)
    ◆ Tensorflow工程師職場實戰技(第六期)
    ◆ Oracle DBA從小白到入職實戰應用(第11期)
    ◆ 金融市場基礎(第13期)
    ◆ 左飛的機器學習十八般算法武藝詳解(第九期)
    ◆ Spark大數據平臺應用實戰(第九期)
    ◆ 深度學習框架Keras學習與應用(第十期)
    ◆ 金融的人工智能革命(第11期)
    ◆ locust性能測試實戰(第四期)
    ◆ Python金融投資分析實踐(第11期)

    GMT+8, 2019-8-16 04:20 , Processed in 0.181195 second(s), 34 queries .

    婷婷五月